BOUNDED COMPOSITION OPERATORS FROM THE BERGMAN SPACE TO THE HARDY SPACE
نویسندگان
چکیده
منابع مشابه
Composition Operators from the Hardy Space to the Zygmund-Type Space on the Upper Half-Plane
and Applied Analysis 3 In two main theorems in 20 , the authors proved the following results, which we now incorporate in the next theorem. Theorem A. Assume p ≥ 1 and φ is a holomorphic self-map of Π . Then the following statements true hold. a The operator Cφ : H Π → A∞ Π is bounded if and only if sup z∈Π Im z ( Imφ z )1/p < ∞. 1.8 b The operator Cφ : H Π → B∞ Π is bounded if and only if sup ...
متن کاملSelf-commutators of composition operators with monomial symbols on the Bergman space
Let $varphi(z)=z^m, z in mathbb{U}$, for some positive integer $m$, and $C_varphi$ be the composition operator on the Bergman space $mathcal{A}^2$ induced by $varphi$. In this article, we completely determine the point spectrum, spectrum, essential spectrum, and essential norm of the operators $C^*_varphi C_varphi, C_varphi C^*_varphi$ as well as self-commutator and anti-self-commutators of $C_...
متن کاملSpectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2
Let -----. For an analytic self-map --- of --- , Let --- be the composition operator with composite map --- so that ----. Let --- be a bounded analytic function on --- . The weighted composition operator --- is defined by --- . Suppose that --- is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....
متن کاملHankel Operators on the Bergman Space of Bounded Symmetric Domains
Let ii be a bounded symmetric domain in C with normalized 2 volume measure dV . Let P be the orthogonal projection from L (il, dV) 2 2 onto the Bergman space La(Q) of holomorphic functions in L (ii, dV). Let P be the orthogonal projection from L (ii, dV) onto the closed subspace of antiholomorphic functions in L (ii, dV). The "little" Hankel operator h, with symbol / is the operator from La(Ci)...
متن کاملComposition Operators between Bergman and Hardy Spaces
We study composition operators between weighted Bergman spaces. Certain growth conditions for generalized Nevanlinna counting functions of the inducing map are shown to be necessary and sufficient for such operators to be bounded or compact. Particular choices for the weights yield results on composition operators between the classical unweighted Bergman and Hardy spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2014
ISSN: 1015-8634
DOI: 10.4134/bkms.2014.51.4.1005